
01

Audit Report 
July, 2021

https://audits.quillhash.com/smart-contract-audit


Contents

Scope of Audit 01

02

03

04

10

11

12

Techniques and Methods

Issue Categories

Issues Found – Code Review/Manual Testing

Summary

Automated Testing

Disclaimer



050401

CentToken: ERC20 Token with snapshot mechanism 
Commit: fb315312ff1544e3af47d8d2246bcc0c75eadf59 
Fixed In: e06c4fd50d021607c8c73b7bda3cdf16647e0399 

SymmCoin: ERC20 Token with snapshot mechanism 
Commit: 9d6ba6f3f48f99cc604db4901e4d39eecef55d87 
Fixed In: b81bb791e303d88051839e1d8047dc8b634a44f4 

CToken: ERC20 Token used for accounting purpose 
Commit: 0a10c72ed57c372d7861c02a9c58384b89d58de6 

PoolState: Helper contract to efficiently return information on pools rather 
than have multiple separate calls 
Commit: 4f3e44edf968b1b224d06b9dcdc444f9ef3fe46b

Symmetric is built to drive mass adoption of DeFi. With a focus on 
simplicity, it is designed with newcomers in mind, removing technical 
barriers by providing seamless connectivity. In addition by leveraging 
lower and predictable gas prices on networks like xDai & Celo, 
Symmetric makes DeFi more cost effective than other networks. Its 
unique risk fund provides a protective layer to users and liquidity 
providers of the platform, reducing risk of loss due to malicious attacks. 

Symmetric makes DeFi accessible to everyone, regardless of the size of 
their portfolio, technical knowledge or risk appetite.

Scope of Audit

Overview

https://symmetric.finance/


0502

We have scanned the smart contract for commonly known and more 
specific vulnerabilities. Here are some of the commonly known 
vulnerabilities that we considered:

Checked Vulnerabilities

Re-entrancy 

Timestamp Dependence 

Gas Limit and Loops 

Exception Disorder 

Gasless Send 

Use of tx.origin 

Malicious libraries 

Compiler version not fixed 

Address hardcoded 

Divide before multiply 

Integer overflow/underflow 

ERC20 transfer() does not return boolean 

ERC20 approve() race 

Dangerous strict equalities 

EIP712 Structure 

Tautology or contradiction 

Return values of low-level calls 

Missing Zero Address Validation 

Private modifier 

Revert/require functions 

Using block.timestamp 

Multiple Sends 

Using SHA3 

Using suicide 

Using throw 

Using inline assembly



0203

The following techniques, methods and tools were used to review all the 
smart contracts. 

Structural Analysis 
In this step we have analyzed the design patterns and structure of smart 
contracts. A thorough check was done to ensure the smart contract is 
structured in a way that will not result in future problems. 
SmartCheck. 

Static Analysis 
Static Analysis of Smart Contracts was done to identify contract 
vulnerabilities. In this step a series of automated tools are used to test 
security of smart contracts. 

Code Review / Manual Analysis 
Manual Analysis or review of code was done to identify new vulnerability 
or verify the vulnerabilities found during the static analysis. Contracts were 
completely manually analyzed, their logic was checked and compared with 
the one described in the whitepaper. Besides, the results of automated 
analysis were manually verified. 

Gas Consumption 
In this step, we have checked the behavior of smart contracts in 
production. Checks were done to know how much gas gets consumed and 
the possibilities of optimization of code to reduce gas consumption. 

Tools and Platforms used for Audit 
Mythril, Slither, SmartCheck, Surya, Solhint.

The overall quality of code. 
Use of best practices. 
Code documentation and comments match logic and expected behaviour. 
Token distribution and calculations are as per the intended behaviour 
mentioned in the whitepaper. 
Implementation of ERC-20 token standards. 
Efficient use of gas. 
Code is safe from re-entrancy and other vulnerabilities.

Throughout the audit of smart contract, care was taken to ensure:

Techniques and Methods



0404

Low level severity issues

Informational

Medium level severity issues

High severity issues

Issue Categories

Low level severity issues can cause minor impact and or are just warnings 
that can remain unfixed for now. It would be better to fix these issues at 
some point in the future.

These are severity four issues which indicate an improvement request, a 
general question, a cosmetic or documentation error, or a request for 
information. There is low-to-no impact.

The issues marked as medium severity usually arise because of errors and 
deficiencies in the smart contract code. Issues on this level could potentially 
bring problems and they should still be fixed.

A high severity issue or vulnerability means that your smart contract can be 
exploited. Issues on this level are critical to the smart contract’s 
performance or functionality and we recommend these issues to be fixed 
before moving to a live environment.

Every issue in this report has been assigned with a severity level. There 
are four levels of severity and each of them has been explained below.

Number of issues per severity

Open

Type High

Closed

Low

9 0

0 1

00

00

Medium Informational



0405

Test Cases

Only SNAPSHOT_ROLE should be able to take a Snapshot of the state. 
-- > PASS 

Only MINTER_ROLE should be able to Mint tokens. 
--> PASS 

Shouldn’t Mint to Zero Address. 
--> PASS 

Shouldn’t be able to Burn Tokens more than the available balance 
--> PASS 

Spender shouldn’t be able to burn tokens more than the allowance 
from owner. 
--> PASS 

Shouldn’t be able to Transfer Tokens more than the available balance 
--> PASS 

Spender shouldn’t be able to transfer tokens more than the allowance 
from owner. 
--> PASS 

Only DEFAULT_ADMIN_ROLE can grant or revoke role. 
--> PASS 

staticcall should return a status 0, if the function called at address 
addr is doing some state modifying operations, or if the function 
doesn’t exist at the specified address, and hence the result returned by 
function getUint() should be 0. 
--> PASS 

Function getPoolInfo() should return for all the supplied Pools: Swap 
Fee for a Pool Address and the balances of all the token addresses of 
the pool. 
--> PASS



0406

Issues Found

Suggestion

High severity issues

No issues were found.

Medium severity issues

PoolState.sol 

[#L26-48] function getPoolInfo(): 

A require check for the length parameter can be added: If the supplied 
length is a number that is equal or greater than the length of pools 2D 
array, or in other words a number enough to hold all the values that is 
the swap fee of the pool and balance of each token address, then the 
function will work as intended. But if it supplied less than that(meaning a 
number less than the total values), it will result in Invalid Opcode.

1. [FIXED] [71-80] hashStruct

The order of concatenation of member values doesn’t match with the 
PERMIT_TYPEHASH 

Recommendation 
Consider using draft-ERC20Permit extension from openzeppelin for 
Permit function 

References

https://eips.ethereum.org/EIPS/eip-712 
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ 
master/contracts/token/ERC20/extensions/draft-ERC20Permit.sol

CentToken.sol & symmCoin.sol

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/draft-ERC20Permit.sol
https://eips.ethereum.org/EIPS/eip-712
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/draft-ERC20Permit.sol


0407

Low level severity issues

2.

4.

3.

5.

Older Versions of the solidity compiler have been used in all the 
contracts: Use newer versions so as to avoid bugs introduced in the 
older compilers.

ERC20 approve() race: 
The standard ERC20 implementation contains a widely-known racing 
condition in its approve function, wherein a spender is able to witness 
the token owner broadcast a transaction altering their approval and 
quickly sign and broadcast a transaction using transferFrom to move the 
current approved amount from the owner’s balance to the spender. If 
the spender’s transaction is validated before the owner’s, the spender is 
able to spend their entire approval amount twice. 

Reference:

Multiple Pragma Directives have been used: Use one solidity compiler.

Contract BColor should be marked as abstract

CToken.sol

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXB 
bT0mooh4DYKjA_jp-RLM/edit 
https://medium.com/mycrypto/bad-actors-abusing-erc20-approval- 
to-steal-your-tokens-c0407b7f7c7c 
https://eips.ethereum.org/EIPS/eip-20

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://medium.com/mycrypto/bad-actors-abusing-erc20-approval-to-steal-your-tokens-c0407b7f7c7c
https://eips.ethereum.org/EIPS/eip-20


0408

6.

7.

Missing Virtual/Override: User Virtual & Override keywords while 
overriding functions

Multiple declarations of Events Approval and Transfer found as the 
CToken contract inherits from IERC20 and CTokenBase. The CToken 
contract finds the event declaration twice. 



0409

8.

9.

Explicit type conversion not allowed from "int_const -1" to "uint256": 
Use type(uint256).max

Missing Minting/Burning Implementations: The contract has Minting and 
Burning internal functions but no public/external functions to 
accompany them. Also, the contract doesn’t mint the initial tokens.

10. The contract doesn't take snapshots of the state (Balance, TotalSupply)
automatically while minting or token transfers.

CentToken.sol & symmCoin.sol

Informational

No issues were found.



0510

Gas Optimization

Public functions that are never called by the contract should be declared 
external to save gas. 

CToken.sol

Automated Testing

Slither

Mythril

Smartcheck

Solhint

Slither didn’t detect any high severity issues.

Mythril didn’t detect any high severity issues.

Smartcheck didn’t detect any high severity issues.



0511

Disclaimer

The audit does not give any warranties on the security of the code. One 
audit cannot be considered enough. We always recommend proceeding 
with several independent audits and a public bug bounty program to 
ensure the security of the code. Besides a security audit, please don’t 
consider this report as investment advice.



0812

Closing Summary

Some issues of medium and low severity have been reported during the 
audit. The medium severity issue has been fixed in the new commit. No 
critical or high severity issues have been reported. Some suggestions have 
also been made to improve the code quality and gas optimisation. 



17

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit



